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Abstract 

There have been a variety of applications of TRIZ and Systematic Innovation (SI) techniques to 

the disciplines of computing and software development. When these computing system analyses are 

directed specifically towards a system's computing hardware it is a somewhat straight forward 

endeavor of standard TRIZ and systematic innovation employed for electro-mechanical/thermal 

systems. However, the application of TRIZ and systematic innovation to only the software 

sub-component of a computing system is not only problematic but also fundamentally misguided in 

its rationale. As stated, software is simply a single component, or multiple components, in a larger 

system which most likely serves as a control system for some even greater physical system. Granted 

the software component is unique in that it has virtual characteristics, but the software/coding is a 

component none the less.  One of the fundamentals of TRIZ is that it helps to identify and resolve 

contradictory requirements between system components.  TRIZ is not effective when applied to 

individual components or when visibility to the larger system is not available to shed light on the 

functional requirements of the components.   

Unfortunately many of the attempts to apply TRIZ and systematic innovation to software have 

been met with less than desirable results. The lackluster outcomes are a consequence of two 

misunderstandings: 1.) that the non-tangible software is a functional tool in and of itself and 2.) that 

it is sensible to improve the design/functionality of a single component operating within a larger 

system by analyzing that component as if it were a standalone entity. Attempting to improve a piece 

of coding by analyzing it in and of itself is analogous to attempting to improve a musical score 

without any thought or attention to the musical instruments (at the micro level), or the orchestra (at 

the macro level), that the music has been written for. While syntax changes may very well result in 

some improvements in the software/code operation or effectiveness (an optimization attempt), the 

gains over the functionality of the basic code (assumed to be already operational) will be limited.  

In fact, the only way to effectively improve a piece of coding, as far as its ability to substantially 

improve its affect as to the operation of the system to which it is assigned, is to understand the 

interface and interaction of the coding within the overall system.  Only then can meaningful 

changes be made to the coding based on understanding the needs of the larger system.  This 

analysis can never be accomplished based solely on the examination of the software itself. 

The paper will describes a systems engineering approach to analyzing and improving 

computing systems which sometimes requires coding changes and which sometime can be improved 

by changes to other portions of the overall control system. 
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1. Introduction 

According to the Gartner Worldwide IT Spending Forecast "...worldwide dollar-valued IT 

spending will grow 3.2% in 2014..., reaching $3.8 trillion as the world economy gradually 

recovers."[1]  This level of spending signifies that IT is seen as a crucial component in most every 

commercial and government operation worldwide.  It is no wonder that businesses are looking for 

ways to innovate in the software development space.  As a result of the pressure to improve coding 

development and effectiveness many have attempted to apply TRIZ and Systematic Innovation 

techniques to the discipline of programming, usually with lackluster results.  The primary reason 

for the less than desirable affect of TRIZ/systematic innovation on the world of syntax is the 

shortsighted focus of looking only at the software.  In fact, most everyone who has ever asked me 

about the application of TRIZ to software only wants to analyze, and therefore "fix," the coding 

itself.  However, a piece of coding is without exception but a single component, or several 

components, within a much larger and more complex engineering system.  Further, the computing 

system the coding operates within most often fundamentally serves the purpose of being a control 

system within an again larger engineering system.  Why is it then that so many have concentrated 

only on the coding when trying to improve their programming?  Isn't that very much like an 

automotive engineer, who wants to improve the operation of the cam shaft, only analyzing the cam 

shaft (one of the devices that controls and orchestrates the engine) and ignoring all other system 

components while doing so?  This appears to be a technique limited to marginal affect.   

Because of the poor results of previous software innovation attempts a more fruitful method for 

software innovation has been developed.  The technique is the best way to gain innovative insight 

when working to improve an engineering system that includes a computer based control sub-system.  

The methodology, also known as SI for Computing, combines modifications of several traditional 

TRIZ and systematic innovation techniques in a process that provides enhanced insight towards the 

goal of innovating computer based engineering system.  The following materials will discuss SI for 

Computing's: Capabilities Maturity Model Integration (CMMI) process inspiration, utilization of 

systems engineering analysis as the basis for the method and finally additional features that allow for 

its effective usage in a variety of scenarios.  

It should be noted that a glossary for "words of art" utilized within this paper is included just 

prior to the references. 
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 2. Capabilities Maturity Model Integration (CMMI) 

The Capabilities Maturity Model Integration (CMMI) process improvement methodology 

demonstrated that poor software is not a development issue but rather a system analysis and 

integration issue.  "CMMI was developed by a group of experts from industry, government, and the 

Software Engineering Institute at Carnegie Mellon University.  CMMI models provide guidance for 

developing or improving processes that meet the business goals of an organization.  A CMMI 

model may also be used as a framework for appraising the process maturity of the organization."[2]  

CMMI was originally designed for the support of software engineering processes but has since been 

expanded for general product and service development, among other applications.  According to 

the Software Engineering Institute (SEI, 2008), CMMI helps "integrate traditionally separate 

organizational functions, set process improvement goals and priorities, provide guidance for quality 

processes, and provide a point of reference for appraising current processes."[3]  As can be seen in 

"Figure 1 - Characteristics of the CMMI Levels" organization's processes are rated on five levels of 

maturity.  The higher maturity ranking an organization's processes receive the more effective and 

robust software those processes are capable of developing.   

 

 Figure 1 - Characteristics of the CMMI Levels [4] 

Organizations whose processes are ranked at the lower levels (one and two) mistakenly believe that 

their software developers need more skills and that they will then write better and more effective 

coding.  However, in fact there is probably little to no difference in the ability of the programmers 

within those CMMI level one and two organizations than those employed by the organizations in the 

upper echelon levels of the CMMI.  So then why do the programmers working within organizations 
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 with processes ranked at CMMI levels three, four and five consistently produce high quality 

software?  The answer is surprisingly simple.  Among other attributes, higher level CMMI 

organizations utilize elevated degrees of organizational coordination, customer input, feedback and 

understand, and control their projects from a full systems level approach (in so far as both the 

software development process and the engineering system the software is being developed for).  It 

sounds obvious but the extent to which programmers interface with the end customer, and better 

understand the entire system they are coding for, the more robust and effective coding they write.  

However, organizations with processes ranked at CMMI levels one and two most often throw 

programming chores to their software developers treating their task as a necessary evil in finishing a 

larger project.  Referring again to "Figure 1" it can be seen that both Intel and Samsung Electronics 

are believed to be ranked at CMMI levels one and two.  When you step back and consider that both 

Intel and Samsung Electronics' primary business is hardware design and manufacturing it seems 

more likley that they would treat firmware for those products as a task rather than a product in and of 

itself.  Contrary to that approach, organizations whose processes are ranked at the upper CMMI 

levels treat the software they development as a products and expect it to be orchestrated with their, 

or their customer's, full engineering systems.  It is this last attribute of understanding the software 

coding requirements form a full systems engineering analysis standpoint that prompted my initial 

jump into developing the systematic innovation for computing process (SI for Computing). 

3. Systems Engineering Analysis 

Systems engineering analysis is a process that drives to insure that all pertinent aspects of a 

system are considered and integrated into a single study.  There are many models that can be 

effectively used within a systems engineering approach but the method that best integrates with 

TRIZ, and other systematic innovation methodologies, is functional modeling.  Functional 

modeling is a system analysis method which considers functional relationships between a system's 

components.  A graphical representation of a functional model depicts the system's components and 

connects those components with arrows showing the functional relationships between those 

components.  In other words, it depicts the affect the components have on each other.  "Figure 2 - 

Generic Computer Based Engineering System Functional Model" portrays a simple functional model 

of a generalized computer based engineering system (note - no insufficient, excessive or harmful 

functions are annotated outside of the air and heat components).  The beauty of a graphical 

functional model is that it focuses the analyst on what is import about an engineering system, namely 

the functional output of the system and the functions occurring between the system's components 

that create that functional output. It is through this function mapping that the requirements of an 

engineering system's computer control systems software can easily be established with little 

uncertainty.  

The goal when functionally modeling a computer based engineering system should not be 

myopically focused on improving the software but rather on improving the system in general.  
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 Sometimes the system improvement pursuit does point towards the need for a modification of the 

control software/firmware.  However, in other cases the system issues can be addressed at other 

locations within the engineering system.  Just as with an engineering analysis of an 

electro-mechanical/thermal system the problem solver should never begin an analysis with a 

preconceived notion of which system component, or interaction, needs to be improved.   

 

Figure 2 - Generic Computer Based Engineer System Functional Model 

Pre-determining an improvement focus usually results in significantly limiting the improvement 

opportunities and therefore the overall results.  In fact the first place an analyst should focus on is 

the basic function of the system.  What is the basic function?  The basic function of a system is a 

"useful function that acts directly upon the product of the functional model, also very likely to be the 

main function of the engineering system."[5]  The reason it is best to start the analysis with this 

interaction is that the basic (or main) function is the most important function of the engineering 

system as this is where the systems functionality (or affect) is delivered.  For example, a 

programmable thermostat has the job of measuring air temperature, deciding if the air temperature is 

within a pre-set range and then sending an on or off signal to the furnace.  It is the function of 

signal informs furnace that is most important to the successful operation of the engineering system 

called programmable thermostat.  If the basic function of signal informs furnace is judged to be 

insufficient then it is necessary to understand why.  It should not automatically be assumed that the 
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 programmable thermostat's firmware is the problem.  What if the signal wire from the thermostat to 

the furnace is of a smaller gauge than necessary, resulting in a high electrical resistance, in-turn not 

allowing the signal to reach the furnace consistently?  In this scenario a simple signal wire upgrade 

might very well fix the problem.  However, assuming wire gauge was not the problem then it would 

be necessary to continue working the analysis back through the system eventually arriving at the 

thermostats firmware.  If the issue is found prior to reaching the firmware then the problem could 

be addressed elsewhere. For instance, maybe the system controller is not effectively exchanging data 

with the system's memory.  In this case a hardware fix may be in order.  The point is that while 

software changes may indeed fix issues occurring at other points in the system the software/firmware 

should never be focused on solely as the target of the analysis.  With this in mind any computer 

based engineering system analysis should always start from the basic function and work its way back 

towards the software while asking the question - where is the principal issue in the system and where 

is the best location within the system to address that issue?  More specifically:  

1.) What is the relationship between the machine and the super-system (shown as a human 

in "Figure 2") and where can it be improved?  

2.) What is the relationship between the machine and the control computer and where can 

it be improved?  

3.) What is the relationship between the control computer and the software/firmware and 

where can it be improved? 

4.) What is the relationship within the software/firmware itself and can it be improved? 

 

"Figure 3 - Computer Based Engineering System Analysis Flow" illustrates the above with an 

analysis direction and focus that could be utilized when analyzing a computer based engineering 

system and refers directly to the numbered steps in "Figure 2." 

 

Figure 3 - Computer Based Engineering System Analysis Flow 
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  Now that we have discussed the basics of functionally modeling a computer based engineering 

system there are a few more details that are important to the effective application of the functional 

model to this type of analysis.  First is the delineation between the control system, the 

embedded/computing system and the coding.  Second is the comprehension of the importance of 

identifying and understanding the interface and interactions between the physical world components 

and the control system in so far as establishing the software/firmware operational requirements.  

And finally, the modeling of the coding itself.   

It is important to understand the boundaries, interactions and relationships between three 

hierarchically concentric, yet distinct, system levels within the computer based engineering system.  

Referring to "Figure 4 - Computer Based Engineering System Hierarchy" and starting from the 

inside and working our way out these sub-systems are: software/firmware, embedded/computing 

system and the control system.  The software/firmware, embedded/computing system and the 

input/output devices constitute the control system.  In relation to the management and operation of 

the greater engineering system, the most important sub-system (functionally) is the control system.  

The control system is made up of all the sub-systems that work together to create the function(s) that 

connect the virtual/digital computing components and sub-systems with the physical/analog "real 

world" sub-systems (e.g., display, hydraulic valve, relay, etc.).  If the control system is designated 

as the engineering system then its output is of course a basic function and serves to ultimately 

control the super-system based target.  For example, considering a motion activated security light, 

the control system would include the motion sensor (input device), computing/logic system and the 

relay (output device) that stops electrical current from reaching the light emitting device (see "Figure 

4").  Moving deeper into the system the next functionally important sub-system is the 

embedded/computing system. This sub-system carries all of the components necessary to analyze 

input signals, make decisions and send output signals but it does not have the ability to connect to 

our outside "real" world.  It can be seen that the embedded/computing system referred to in "Figure 

4" is generically made up of a logic circuit, processor core, input/output device, analog/digital 

converter, signal, "logic" current, memory and code.  The power supply may be considered as part 

of the embedded/computing system depending on whether or not that designation suits the analysis.  

Finally, moving even deeper into the system the least functionally important sub-system is the 

software/firmware.  The software/firmware sub-system is actually a combination of the coding 

itself (a virtual component) and a memory module which serves as the physical location for the 

virtual software to reside and allows for the coding's interface and interaction with the other physical 

computing component.  The inclusion of both the code and its residence (memory module) within 

the sub-system called software/firmware is important because the inclusion of the memory module 

allows for the modeling of the interactions of the coding with other components and the inclusion of 

the coding allows for the modeling of the system focused affects of the software/firmware.  This 

view point produces sometimes small but often significant realizations about the functioning of the 

code within the embedded/computing system. 
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Figure 4 - Computer Based Engineering System Hierarchy 

Now that we have defined the three concentrically arranged major sub-systems of the control 

system it is important to understand their inter-relationships.  As we have learned the most 

important function of any engineering system is its basic function.  In the example of the motion 

activated security light the basic function would be light informs human.  Now stepping back to the 

outer most concentric control sub-system the most important function of that control system is the 

function that directly contributes to the delivery of the basic function.  Again referring to the 

"Figure 4" the function created by the control system and affecting "outside" components is the 

function of relay stops "light" current.  Therefore, the function of stops "light" current is the basic 

function of the control system and therefore its most important function of the control system.  

Furthermore, the auxiliary function of human informs sensor is also very important to the effective 

operation of the motion activated security light because it provides the input signal which triggers 

the control system.  We now know that it is the input to, and output from, the physical/computing 

intermediary components (e.g., sensors, buttons, switches, relays, monitors, motors, etc.) that 

ultimately define the operational and performance requirements of the control system.  In so far as 

effectively supporting the basic function of the entire engineering system it is these requirements, 
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 and these requirements alone, that the system's software architecture, design and syntax should be 

designed around.  

Assuming that a systems engineering functional analysis indicates that software/firmware 

changes are in order then it may be necessary to model and examine the existing coding.  Due to 

the immense complexity and sheer quantity of coding existing in most computer based engineering 

systems this pursuit has proven extremely difficult to most.  The difficulties are exacerbated by the 

practice of attempting to model coding at the command line and syntax level.  While it is 

sometimes possible to gain some limited insight around a focused analysis between a few software 

commands, the results often provide limited impact and can produce unforeseen complications 

elsewhere in the coding or greater engineering system.  Similar to an example given in the 

introduction, if we are to improve the functional output of an internal combustion engine we would 

probably not attempt to do so by modeling the system at the lattice structure level of the engine 

materials.  Analogously, trying to model coding at the command line or syntax level is equally 

futile.  So then how do we model coding?  According to Kevin Brune of Google Corp., "software 

is best functionally modeled at the module level."  This is true because it is at the modular level that 

discrete functional inputs and outputs can be delineated and their interactions with other modules, 

and of equal importance with other embedded/computing system components, can be analyzed.  

Once again referring to "Figure 4" it can be seen that the "coding" is represented as a single 

component within the embedded/computing system.  Let us now look at an example of how coding 

can be functionally represented at the modular level by examining "Figure 5 - Code Module 

Functional Model."  The graphic in "Figure 5" represents a generic anti-lock braking controller 

with appropriate code modules depicted for such a device.  Notice that we now have the ability to 

see how the various modules interact with each other, and with other components, within the 

embedded/computing system.  Further, we can see how the memory module, part of the "coding" 

sub-system, interacts with other embedded/computing system components.  In other words, it is 

now possible to analyze the code modules at the same hierarchal level within which the 

computer/controller components exist.  It is now fairly straight forward for a systematic innovation 

analyst to create technical or physical contradiction models around any problematic relationships 

identified in the modular level functional model.  As modeling at the modular level provides a clear 

understanding as to which other system components each module interacts with it will then be 

apparent as to where coding modifications might best be made to support the desired system 

improvements addressing the individual contradictions.  Therefore, this modular level analysis not 

only points the analyst towards specific sections of code for improvement but also allows for the 

understanding of how any code changes will affect the greater system.  This allows for a much 

easier evaluation as to how those changes will ultimately affect the overall operational system.  

This is the desired output of such an analysis because it is system operational improvements we are 

interested in.  The improvements might be driven by coding changes but those coding changes, and 

the analysis goal, should be focused on improvements to the system, not the coding itself.  For the 

more advanced systematic innovation practitioners it is suggested to apply substance-field (su-field) 
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 modeling to a coding module and embedded/computing system component analysis.  This 

recommendation is made because su-fields allows the simultaneous modeling of the 

interrelationships between all components under analysis while the associated solution modeling 

Standard Inventive Solutions allow for more advanced solutions concepts to be applied. 

4. Two Additional Systematic Innovation for Computing Methodologies 

Finally, there is a bit more detail that additionally enhance the ability to analyze computer based 

engineering systems.  Specifically, the further resolution of the action "informs" and a resources 

analysis framework that is very helpful for innovating within computing systems will be discussed. 

The advanced resolution of the action "informs" and the computing focused analogy of system 

resource analysis will improve the insight gained from functionally modeling a computer based 

engineering system and help with the subsequent solution generation. 

 

Figure 5 - Code Module Functional Model 

The action "informs" is used in electro-mechanical/thermal TRIZ analysis to cover what is 

actually a fairly wide range of interactions and affects.  For the majority of those 

electro-mechanical/thermal system analyses the action "informs" is sufficiently descriptive to allow 



 

 

The 2014 International Conference on Systematic Innovation  

July 16-18, 2014, San Jose, the USA 

 for an effective analysis.  However, when analyzing computing based systems the action "informs" 

is much too broad in its meaning and does not sufficiently portray the relationship between the 

components of interest.  Fundamentally, there is a big difference between the action "informs" 

when it is meant to represent that information is simply available and when it is meant to represent 

that the function results in a direct control of an effected component.  In response the progressive 

sequence of "informs" functions/actions, which has the goal of providing better modeling tools 

resulting in improved analysis and insight, has been developed.  The progressive sequence pertains 

to how much control the action "informs" represents.  Referring to "Figure 6 - Hierarchy of the 

Action Informs,"[6] there are four levels of the action, each increasing the level of system control 

and therefore their importance to the associated engineering system's basic functionality.   

 

Figure 6 - Hierarchy of the Action Informs 

Within this hierarchy, the first, and least important as to the delivery of the basic function, is that of 

"informs."  The action refers to independent data sets and specifically providing those data sets to a 

component or sub-system that uses that data to create a intermediate step scenario for further 

analysis.  An example of the action "informs" could be the provision of atmospheric environmental 

data.  The next function along the path is that of "advises."  "Advises" is the output of a scenario 

generating sub-system or component that takes multiple independent data sets and in turn combines 

them into a scenario that will be used in a decision making process by way of a subsequent 

component or sub-system.  An example of the action "advises" could be the output of a scenario 
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 generator that takes atmospheric environmental data and makes a tornado advisory recommendation 

to a subsequent system.  Then follows the function of "directs."  "Directs" is a function that 

specifically creates a triggering of a specific action with no additional logic required.  This function 

affects the last component within the embedded/computing system and is therefore still in the data 

state.  An example of the action "directs" is the output of a system which takes multiple "advice" 

inputs, say from an tornado advisory generator and from a radar analysis, and makes a decision to 

activate a severe weather alarm.  Finally, the last function, and the most important to the basic 

function of the embedded/computing system, is that of "controls."  As implied "controls" is the 

direct activation of a component, or sub-system, and specifically reaches across the boundary 

between the embedded/computing system and control system. Therefore the action "controls" is the 

activation of a devices that directly affects the electro-mechanical/thermal portions of the 

engineering systems.  An example of the action "controls" would be a component that takes the 

input function of "directs" severe weather alarm and creates a signal that physically activates the 

alarm system.   

Now let's discuss solution generation resource analysis in conjunction with computing systems.  

A popular method for analyzing resources for an electro-mechanical/thermal system is that represent 

by the mnemonic MATChEM.  MATChEM stands for: mechanical, acoustic, thermal, chemical and 

electro-magnetic.  In other words, when searching for ways to influence an 

electro-mechanical/thermal system the analyst should consider all of the resources associated with 

these categories.  Therefore an analogous method for computing systems has been developed.  

Gregory Frenklach, provided some insight regarding the MATChEM resources.  He described how 

each resource in MATChEM represents an interaction at a different level.  A slight modification of 

Gregory's description is as follows: 

Mechanical = object interaction 

Acoustical = surface interaction 

Thermal = lattice/matter interaction 

Chemical = molecular interaction 

Electromagnetic = electron/spin interaction. 

 

Utilizing the above, an analogous resource list for computing was developed.  Referring to "Figure 

7 - Resource Analysis for Software and Hardware"[7] it can be seen that there are many ways to look 

at software and hardware resources and understand at what level their interactions occur.  For 

example, the analogy to a thermal interaction (at the lattice/matter level) would be to consider the 

code dynamics (or rather the movement/action of the coding relative to itself) in relation to the 

system's software while clock, speed, or orchestration would be considered relative to the system's 

hardware.  Additional study of "Figure 7" will provide more insight as to how the interactions 

between and within the software/virtual and hardware aspects of a computing system can be used to 

help solve challenges residing within that system.  
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 5. Conclusion 

The application of TRIZ and systematic innovation to computer based engineering systems can 

be greatly improved by following a few changes to the methods employed for 

electro-mechanical/thermal systems analysis.  First it should be understood that the system's coding 

should not be the primary focus of an innovation exercise as there are often other ways to improve 

computer based engineering systems without any changes to their coding.  As far as the analysis 

process goes the first step is the modification of the handling of the functional modeling of the 

computer based engineering system.  Initially, the delineation between the control system, 

embedded/computing system and the software/firmware should be well understood and the basic 

function of, and inputs to, the embedded/computing system should be comprehended.  Specifically, 

it is the basic function of, and inputs to, the embedded/computing system that establishes the 

operational and performance requirements of the embedded/computing system and therefore the 

software/firmware.  Next, if coding changes are in order then any functional analysis of that coding 

should be performed at the module level.  It is at the module level that coding functionality, and the 

associated interactions, can best be delineated and judged.  Next, a higher resolution of the action 

"informs" should be employed to better represent the progression from "informs to "controls."  

Finally, the software and hardware resources should be studied in order to identify the variety of 

solution generation opportunities available based on interaction improvements.  

  

 

Figure 7 - Resource Analysis for Software and Hardware 
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 Glossary[8] 

 Auxiliary Functions – Useful function that acts upon components of the system, usually 

from within the engineering system. 

 Basic Function (Base Functionality) – Useful function that acts directly upon the product 

of the functional model, also very likely to be the main function of the engineering 

system. 

 Component (System Components) – A material object (substance, field, or substance-field 

combination) that constitutes a part of the engineering system or super-system. 

 Engineering System – A system that has been assigned to perform a function. A set of 

components that work together to perform a function.  

 Function – An action performed by one material object (function carrier) to change or 

maintain a parameter of another material object (object of the function). 

 Function Model - A model of a function being performed.  Performance of the function 

is measured as sufficient, insufficient or excessive. Function analysis deals with the entity 

component that is a material object and can be either a substance or a field 

 Function Modeling – A part of function analysis that builds a function model. 

 Physical Contradictions – A situation in which two opposite requirements are placed 

upon a single physical parameter of an object. 

 Standard Inventive Solutions - a set of 76 typical solutions, in the form of substance-field 

(su-field) models, to typical problems that are also expressed in the form of su-field 

models. 

 Su-Field (Substance-Field) - A model of the problem related to the engineering system, 

but not of the engineering system itself.  Also, the substance and field are clearly 

differentiated. 

 Su-Field Model – Symbolic model of a problem or solution formulated in terms of 

interactions between substances and fields (virtual, real, or improved). 

 Super-system – A system that includes the engineering system as a component.  All 

systems outside the boundaries of the engineering system.  Pertinent super-systems 

includes those that interact with the engineering system.  Understanding the relationship 

between the engineering system and relevant super-systems is important in understanding 

system problems and identifying resources that can be used in the ultimate solution.  

 Target – An object of the main function of the analyzed engineering system. 

 Technical Contradiction - A situation, in which an attempt to improve one parameter of 

an engineering system leads to the worsening of another parameter. 

 TRIZ - The Theory of Inventive Problem Solving, 
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